Convex Real Projective Structures on Compact Surfaces
نویسنده
چکیده
The space of inequivalent representations of a compact surface S with χ(S) < 0 as a quotient of a convex domain in RP by a properly discontinuous group of projective transformations is a cell of dimension
منابع مشابه
Bulge Derivatives and Deformations of Convex Real Projective Structures on Surfaces
Title of dissertation: TWIST-BULGE DERIVATIVES AND DEFORMATIONS OF CONVEX REAL PROJECTIVE STRUCTURES ON SURFACES Terence Dyer Long, Doctor of Philosophy, 2015 Dissertation directed by: Professor Scott Wolpert Department of Mathematics Let S be a closed orientable surface with genus g > 1 equipped with a convex RP structure. A basic example of such a convex RP structure on a surface S is the one...
متن کاملOn convex projective manifolds and cusps
This study of properly or strictly convex real projective manifolds introduces notions of parabolic, horosphere and cusp. Results include a Margulis lemma and in the strictly convex case a thick-thin decomposition. Finite volume cusps are shown to be projectively equivalent to cusps of hyperbolic manifolds. This is proved using a characterization of ellipsoids in projective space. Except in dim...
متن کاملDeforming Convex Projective Manifolds
We study a properly convex real projective manifold with (possibly empty) compact, strictly convex boundary, and which consists of a compact part plus finitely many convex ends. We extend a theorem of Koszul which asserts that for a compact manifold without boundary the holonomies of properly convex structures form an open subset of the representation variety. We also give a relative version fo...
متن کاملAn Algorithm for the Euclidean Cell Decomposition of a Cusped Strictly Convex Projective Surface∗
Cooper and Long generalised Epstein and Penner’s Euclidean cell decomposition of cusped hyperbolic n–manifolds of finite volume to non-compact strictly convex projective n–manifolds of finite volume. We show that Weeks’ algorithm to compute this decomposition for a hyperbolic surface generalises to strictly convex projective surfaces.
متن کاملLocally homogeneous rigid geometric structures on surfaces
We study locally homogeneous rigid geometric structures on surfaces. We show that a locally homogeneous projective connection on a compact surface is flat. We also show that a locally homogeneous unimodular affine connection ∇ on a two dimensional torus is complete and, up to a finite cover, homogeneous. Let ∇ be a unimodular real analytic affine connection on a real analytic compact connected ...
متن کامل